
 

MATH 5061 Lecture 4 Feb 3

Last week vector fields acting on CFM C Melt C Diff M
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Exterior Derivative
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FACT Such an operator exists is uniquelydefinedby cis Ciii
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Proof Ca b easy to check
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Volume Forms Integration

Def'd A volume form on M is a nowhere vanishing n form W

i e w E ICM Wpt 0 at each p E M

Thin TFAE

i 7 Volume form w on Mn

Iii An f M is a trivial Crank 1 bundle over M
RCiii M is orientable Sa
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Riemannian metrics

Def'd A Riemannian metric on M denoted by g or i

Cposdefinite
is an association of an inner product Gp or L p defined

on Tpm depending smoothly on p E M
Sp Sp

Picture
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Locally in word X X on M

G gig Symm posdefinite nxn matrices often

where GijCx x Gy i dependssmoothly
on CX xD

Equivalently G is a symmetric 0,2 tensor on M

which is pos definite at everypoint on M

Def'd Mn g Riemannian manifold

Def A smooth map f M g N h between Riem manifolds

is i an isometry if f h G i.e Gp un hfcpfdfpcas.defpu

ii an local isometry at p if 7 nbd UU of p s t

f U f U is an isometry
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2 Isometric Immersions i f i M N h immersion

f h is a Riem metric on M
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In particular M C N then L M N inclusionmap
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Remark Every oriented Mig has a preferred volumeform

W dug Igi dx n rdx's

invar under
changeof word

Remark Let C a b M smooth cure

Define length c fo geCc'ceI.cETdt

Connections

Q How do we differentiate f CCFM

Ai f eTCM X f or df X or f

the same

Q How do we differentiate vector fields Y C TCTM

AI Lie derivative Y X Y
Y

g g
g y

differentiate Y along C

T Lx Yscp depends on the values

Ctdineegrol are of X and Y in a nbd of P

Reason Y is NIT censorial in X

L Y Ft f Y

AI Covariant derivative 0 4

needs an extra structure of a connection



Def An affine connection on M is a map

T TCTM x TCTM TCTM

X Y 0 4

St i T is bilinear over B
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Ciii FY X f Y t f 0 4 Of CTCM

One can use T to define a covariant derivative as follows

Ct Ct I M curve

f P f Ct I TM vector field along C17
ie Uct C Tae M

c

Def DV T is tensorial
Tf ToV in X variable

fo well definedness

Covariant
a vectorfield

dentatie along c

of alongC


